Undergraduate Required
According to the regulation of 2021 school year
The required courses are divided into two academic tracks, the Meteorology and Climatology track and the Atmospheric Environmental Chemistry track.
Freshman 1st semester  Freshman 2nd semester  Sophomore 1st semester  Sophomore 2nd semester  Junior 1st semester  Junior 2nd semester  

Common Requirements  
Meteorology and Climatology Requirements  
Atmospheric Environmental Chemistry Requirements 
Course Introduction

Course NameInstructorCreditIntroduction

Courses offered by instructors from other departmentsCalculus, General Chemisry & Lab, General Physics, General courses, Liberal Education Courses and so on.
 For more information please visit "Office of Academic Affairs, NTU" or "NTU Online Course Information". 
Introduction to Atmospheric SciencesCHUNCHIEH WU / ChienMing Wu / MINHUI LO / WEITING CHEN / YENTING HWANG2The course of "Introduction to Atmospheric Sciences" is designed to lead students to build up the basic concept of atmospheric sciences; to guide and inspire students on their interests in atmospheric sciences; and to enhance the linkage between this course and the followup related courses in the Department of Atmospheric Sciences. Through the interaction in this class, the course is expected to prepare the students for critical thinking and problem solving in atmospheric sciences.

Program and Scientific ComputingWEITING CHEN2The research of Atmospheric Sciences frequently requires capability of programing and using computer software to carry out data analysis, graphics, and visualization. The course is designed to meet the needs of scientific computation and graphics that the students may encounter in the future when taking advanced courses or doing research, specifically for Atmospheric Sciences. The FORTRAN 90/95 programming language, as well as the Python and GrADS software, are covered. Through the classroom lectures, sample programs, and frequent handson exercises, the goal of this course is to foster the problemsolving capability of using programming and software tools, to establish accurate concepts on scientific programming, and to provide the students with sufficient programming experience.

Atmospheric ThermodynamicsChienMing Wu3The course covers fundamental thermodynamics and moist processes that are essential to atmospheric sciences.
 Topics covered in this course are listed belows
1. Equation of state
2. Buoyancy temperature. Energy conservation.
3. State variables vs. process variables. Various processes.
4. Potential temperature. Hypsometric equation and static energy.
5. Typhoon as a Carnot cycle, efficiency and typhoon strength.
6. Entropy. Entropy increase and irreversible processes.
7. Mixed layer model. Phase diagram of water.
8. CC equation and its application.
9. Various temperatures and potential temperatures.
10. Vertical profiles and moist adiabatic processes.
11. SkewT diagrams.
12. Lapserate and stability.
13. CAPE/CIN and thermodynamic instability.
14. Parcel model and the typhoon intensity change under climate change.

Applied Mathematics (Ⅰ)3Applied Mathematics I includes Linear Algebra and Ordinary Differential Equations. It provides basic mathematical training for all science and engineering students.The contents include
 Linear Algebra
1. Vectors and Matrices (1.5 weeks)
2. Matrix Algebra (1)
3. Vector Spaces (1)
4. Projections and Linear Transformations (1)
5. Determinants (1)
6. Eigenvalues and Eigenvectors, Singular Value Decomposition (1.5)
 Ordinary Differential Equations
1. Firstorder Single Differential Equations (1.5)
2. Secondorder Linear Differential Equations (1.5)
3. Nonlinear Systems in Two Dimensions (1.5)
4. Linear Systems with Constant Coefficients (2)
5. Methods of Laplace Transform (1)
6. Stability and Bifurcations (1.5) 
Cloud PhysicsJENPING CHEN2This course introduces the physical processes that control the formation of cloud and precipitation, and relevant observational and numerical simulation techniques. The main topics include：
● The macro and microstructures of clouds
● Basic cloud thermodynamics
● The activation and nucleation processes
● Diffusional growth of droplets
● Diffusional growth and habits of ice crystals
● The collisional growth of raindrops
● The collisional growth of snow, graupel, and hailstone
● Remote sensing of clouds and precipitation
● Cloud numerical simulation
● Phenomena related to violent convective systems
● Inadvertent and intentional weather modifications
Presentation methods include oral lectures using PowerPoint slides and demonstrations with physical experiments. 
Atmospheric Measurement and InstrumentationPOHSIUNG LIN3This course introduces the requirement on the atmospheric sciences observation first. It also gives the features of instruments and the different types of measuring standard. The surface and upperair observations for monitoring weather and climate are described.

Statistics with Meteorological ApplicationsMINHUI LO / YUCHIAO LIANG2Data statistical analysis and artificial intelligence are essential to research and applications in atmospheric/climate sciences. Students of this course will learn step by step various theories and methods of basic data statistical analysis, which usually is applied in atmospheric sciences, including uncertainty estimation, hypothesis testing, and regression analysis. Students will also learn the basic concept of machine and deep learning and be familiar with applying neural networks to geoscience problems.
 Class Outline
1. Descriptive Statistics
2. Population and sample; expectation, variance
3. Probability; sample variance and sampling
4. Estimation; Hypothesis testing
5. Regression
6. Neural network and Deep Learning 
Atmospheric Dynamics (Ⅰ)CHUNCHIEH WU3 This course contains
0. Overview
1. Introduction –
The atmospheric continuum, physical dimensions, and units, scale analysis, the fundamental forces, noninertial reference frames and apparent forces, structure of the static atmosphere.
2. The basic conservation laws –
Total differential, the vertical form of the momentum equation in rotating coordinates, the component equations in spherical coordinates, scale analysis of the equation of motion, the continuity equation, the thermodynamic energy equation, thermodynamics of the dry atmosphere.
3. Elementary application of the basic equations –
The basic equation in isobaric coordinates, balanced flow, trajectories and streamlines, the thermal wind, vertical motion, surface pressure tendency.
4. Circulation and vorticity –
The circulation theorem, vorticity, potential vorticity, the vorticity equation, the barotropic (Rossby) potential vorticity equation, the baroclinic (Ertel) potential vorticity equation.
5. The planetary boundary layer –
Atmospheric turbulence, turbulent kinetic energy, planetary boundary layer momentum equations, secondary circulations and spindown.
6. Synopticscale motions I –
Quasigeostrophic analysis  The observed structure of extratropical circulation, the quasigeostrophic approximation, quasigeostrophic prediction, diagnosis of vertical motion, idealized model of a baroclinic disturbance. 
Atmospheric RadiationII LIN2Atmospheric radiation is a fundamental component in the Earth's climate system and also the foundation for satellite remote sensing. Solar shortwave radiation and longwave radiation from the earth are the major energy source and sink in the climate system. It is important to know how short and longwave radiation interact with atmosphere and earth surface via scattering, reflection, and absorption. This course is a fundamental course in the atmospheric physics. It is also a prerequisite course for the climate and climate change courses.

Synoptic Meteorology (Ⅰ)MINGJEN YANG / WEITING CHEN2 This course contains
1. Introduction –
meteorological element, World Weather Watch (WWW), weather phenomena and weather maps; review of the equation of state, the hydrostatic approximation and the basic thermodynamics, coordinates.
2. Static stability and its application on weather analysis –
thermodynamic charts, parcel instability and layer instability, inversions and processes affecting stability, stability and weather.
3. Kinematics and basic dynamics –
kinematics of pressure pattern, kinematics of vorticity, divergence and deformation, basic balance dynamics, thermal wind, ageostrophic wind, vorticity equation, friction.
4. Air mass and surface fronts –
air mass definition, origin and transformation, definition and structures of fronts, weather phenomena, frontogenesis.
5. Major synoptic weather types affecting Taiwan from reanalysis and satellite observations
6. Precipitation patterns over Taiwan under different synoptic weather –
Orographic effects; local circulation and precipitation hotspots; cloudtopped mixed layers.
7. Transport of air pollutants over Taiwan under different synoptic weather –
Synoptic condition of longrange pollution transport; local circulation and boundary layer processes modulating local pollution distribution. 
Lab. of Synoptic Meteorology (Ⅰ)MINGJEN YANG / WEITING CHEN1This course aims to provide the students with handson experience to apply the weather data and all kinds of weather charts (e.g. surface weather chart, upper weather chart, skewT diagram, satellite imagery, radar reflectivity graph etc.) to investigate the formation, development, and motion of weather systems, as well as to discuss the physical processes modulating specific weather phenomena.
This course will introduce, visualize, and carry out statistical analyses on the reanalysis data and observational data over Taiwan, to understand the influence of complex topography in Taiwan on convection development and air pollution transport under different weather regime from the perspectives of data science. 
Numerical AnalysisMINHUI LO2This course will introduce common numerical methods as well as their fundamental theories in atmospheric sciences and compare the pros and cons of each method. We would carry out the course by using Python programming language, and cover below 8 topics in this course:
● Solving the nonlinear equations
● Solving a system of linear equations
● Curve fitting
● Interpolation
● Finite Difference
● Ordinary Differential Equation (ODE)
● Numerical integration
● Advection and diffusion equation 
Applied Mathematics (Ⅱ)3In this course, we will introduce Fourier series, Fourier transform and their applications to solve wave equation, heat equation and Laplace's equation.

Atmospheric Dynamics (Ⅱ)HUNGCHI KUO3 This course contains
1. Waves in Atmosphere –
wave basic, Fourier analysis, linearization, normal mode, acoustic waves, shallow water equations, reduced gravity, shallow water gravity waves, buoyancy waves, Kelvin wave, vortex Rossby waves, topographic Rossby waves, stationary topographic Rossby waves, stationary Rossby waves, dispersions, numerical dispersion, acoustic adjustment and geostrophic adjustment.
2. Introduction to instabilities –
inertial stability, convective stability, baroclinic instability, barotropic instability, conditional instability
3. Introduction to general circulation –
mass , angular momentum, energy, water vapor balance, threecell circulation dynamics, residual circulation, nonacceleration theorem, Eulerian and Lagrangian circulation.
4. Moist convection and tropical meteorology –
tropical measurement, typhoon, dynamics of squall line.
5. Introduction to NWP –
turbulence revisited with energy cascade, stirring and mixing, predictability. 
Synoptic Meteorology (Ⅱ)CHENGKU YU2 This course contains
1. Extratropical cyclones –
Definition and introduction, cyclogenesis, Petterssen Eq., cyclone precipitation and rainbands and their interactions with topography
2. Applications of hydrodynamic theories on weather analysis –
QG equations, application of QG tendency equation, application of QG omega equation, computation and measurements of vertical motions
3. Tropical cyclones –
Introduction, structure, development and motion of tropical cyclones, orographic precipitation in the TC environment 
Lab. of Synoptic Meteorology (Ⅱ)CHENGKU YU1This course is offered together with the course of Synoptic Meteorology (Ⅱ). The class is divided into two parts. The first part (about one hour) is the weekly weather briefing presented by a group of 2~3 students. In the second part of the class, students are asked to practice various techniques, including Weather Integration and Nowcasting System (WINS), which is currently used in Central Weather Bureau (CWB) daily operation to analyze synoptic weather information.

ClimatologyYENTING HWANG3This course explores how and why Earth’s climate comes about. We will not only introduce what a typical weather condition is over each region on Earth, but also how and why climate, statistic of weather, varies geographically and even temporally throughout the earth’s history. To understand how climate system works, this course discuss concepts of radiative transfer, fluid dynamics, and thermodynamics, with an emphasis of providing an overview of a few physical balances that are important for shaping and maintaining the surface climate: energy balance and its role in controlling temperatures; the hydrologic cycle and its role in controlling humidity and aridity; angular momentum balance and its role in controlling winds.

Numerical Weather PredictionMINGJEN YANG3This course will first introduce the basic concepts of numerical methods, which are the key components for the class of Numerical Weather Prediction (NWP). Then examples of the barotropic vorticity model and primitive equation models used during the early development of the NWP will be discussed and demonstrated in class.
 Lecture Outline
1. Numerical approximation, finite differencing
2. Accuracy, stability, and convergence
3. Timedifferencing
4. Spacedifferencing
5. Combined time and spacedifferencing
6. Spectral and pseudospectral methods
7. Barotropic vorticity model
8. Primitive equation models 
Atmospheric ChemistryHung, HuiMing3In this course, the chemical processes controlling the atmospheric composition will be introduced. The impact of human activity on the atmospheric system will be discussed based on the chemical processes.
 Lecture Outline
1. Introduction & Overview the Main Problems (Ch. 1, 2)
1a. Measures of Atmospheric Composition
1b. Atmospheric Pressure
2. Simple Models (Ch. 3)
3. Stratospheric Chemistry (Ch. 9, 10)
3a. Chemical Kinetics
3b. Stratospheric Ozone – Chapman mechanism
3c. Stratospheric Ozone – Polar Ozone Loss
4. Tropospheric Chemistry (Ch. 11,12, 13, 8)
4a. Oxidizing Power of the Troposphere
4b. Oxidataion of CO and CH4
4c. Production of Ozone
4d. Ozone Pollution
4e. Aerosols & Acid Rain (Ch 8, 13)
5. Geochemical Cycles (Ch 6)
6. The Greenhouse Effect (Ch 7) 
Atmospheric Physical ChemistryJENPING CHEN3This course focuses on the physical chemistry of atmospheric particles and mixture systems, and their roles in atmospheric processes. Prerequisites include basic knowledge on thermodynamics and cloud/aerosol physics.
 This course contains
1. Atmospheric particles systems –
aerosol, cloud, effect of trace material on climate
2. Thermodynamics of chemicals –
free energy and chemical potential, equilibrium of mixture/binary system, phase diagram of binary systems, classical nucleation theory, supercooling and vitrification, quasiliquid layer
3. Thermodynamic equilibrium of aerosol particles –
Köhler curve, deliquescence, efflorescence, hysteresis cycle, cloud drop activation, aerosol binary homogeneous nucleation, aerosol nucleation in urban and rural areas
4. Aqueousphase chemistry –
basic chemical reaction and equilibrium, Henry’s equilibrium and hydrolysis, aqueous reactions, nonlinear mixing of cloud water, gasliquid mass transfer, characteristic times
5. Icephase chemistry –
liquidice mass transfer, entrapment, sorption, interface chemistry
6. Highcloud physical chemistry –
tropospheric cirrus, polar stratospheric clouds and ozone hole
7. Atmospheric physical chemistry and atmospheric environment 
Biogeochemistry and ClimateHung, HuiMing / Ren, HaoJia / Wang, PeiLing3This course will discuss the interaction between biosphere, chemistry and climate from presentations with some handsonexperiments.
 The contents of this course includes
● Biogeochemistry Overview
● Origins, Chapter 2
● Free Energy & Thermodynamics
● The Atmosphere, Chapter 3
● The Lithosphere, Chapter 4
● Carbon Cycle of Terrestrial Ecosystems, Chapter 5
● Biogeochemical Cycling on Land, Chapter 6
● Biogeochemical in Freshwater, Wetlands and Lakes, Chapter 7
● Rivers, Chapter 8
● The Oceans, Chapter 9
● The Global Water Cycle, Chapter 10
● The Global Carbon Cycle, Chapter 11
● The Global N and P Cycles, Chapter 12
● The Global S Cycle, Chapter 13