Super User

Super User

Congratulations to Hung-Chi Kuo, Professor of Department of Atmospheric Sciences, National Taiwan University, is selected as one of the first fellows of TWSIAM (2020)

 

Prof. Hung-Chi Kuo is selected for his outstanding contribution to the realm of atmospheric sciences research, including typhoon dynamics, simulation of atmospheric dynamics, promoting education of mathematical modeling, and combining science and mathematics.

 

All TWSIAM Fellows: http://www.twsiam.org/index.php/zh/%E6%A6%AE%E8%AD%BD/%E6%9C%83%E5%A3%AB/twsiam-fellows

週一, 15 八月 2022 12:35

STEPHEN M. GRIFFITH 專案助理教授

 

Publications (in reverse chronological order)

  • Chang, P.-K., Griffith, S. M., Chuang, H.-C., Chuang, K.-J., Wang, Y.-H., Chang, K.-E., Hsiao, T.-C., “Particulate Matter in a Motorcycle-Dominated Urban Area: Source Apportionment and Cancer Risk of Lung-Deposited Surface Area (LDSA) Concentrations,” J. Haz. Mat. (IF=14.224 [2021]), doi.org/10.1016/j.jhazmat.2021.128188, 427, 128188, 2022.
  • Nguyen, L. S. P., Nguyen, K. T., Griffith, S. M., Sheu, G.-R., Yen, M.-C., Chang, S.-C., Lin, N.-H., “Multi-scale temporal variations of atmospheric mercury distinguished by Hilbert-Huang transform (HHT) analysis reveals multiple ENSO links,” Env. Sci. & Tech. (IF=11.357 [2021]), doi.org/10.1021/acs.est.1c03819, 56, 2, 1423-1432, 2022.
  • Liu, W.-T., Liao, W.-C., Griffith, S. M., Chang, C.-C., Wu, Y.-C., Wang, C. H., Wang, J.-L., “Characterization of odorous industrial plumes by coupling fast and slow mass spectrometry techniques for volatile organic compounds,” Chemosphere (IF=8.943 [2021]), doi.org/10.1016/j.chemosphere.2022.135304, 304, 135304, 2022.
  • Pani, S. K., Lin, N.-H., Lee, C.-T., Griffith, S. M., Chang, J. H-W., Hsu, B.-J., “Insights into aerosol chemical composition and optical properties at Lulin Atmospheric Background Station (2862 m asl) during two contrasting seasons,” Sci. Tot. Env. (IF=10.753 [2021]), doi.org/10.1016/j.scitotenv.2022.155291, 834, 155291, 2022.
  • Kong, S. S.-K., Pani, S. K., Griffith, S. M., Ou-Yang, C.-F., Babu, S. R., Chuang, M.-T., Ooi, M. C. G., Huang, W.-S., Sheu, G.-R., Lin, N.-H., “Distinct transport mechanisms of East Asian dust and the impact on downwind marine and atmospheric environments,” Sci. Tot. Env. (IF=10.753 [2021]), doi.org/10.1016/j.scitotenv.2022.154255, 827, 154255, 2022.
  • Lin, T.-C., Chiueh, P.-T., Griffith, S. M., Liao, C.-C., Hsiao, T.-C., “Deployment of a mobile platform to characterize spatial and temporal variation of on-road fine particles in an urban area,” Env. Res. (IF=8.431 [2021]), doi.org/10.1016/j.envres.2021.112349, 204, 112349, 2022.
  • Nguyen, L. S. P., Chang, J. H.-W., Griffith, S. M., Hien, T. T., Kong, S. S.-K., Le, H. N., Huang, H.-Y., Sheu, G.-R., Lin, N.-H., “Trans-boundary air pollution in a Southeast Asian megacity: Case studies of the synoptic meteorological mechanisms and impacts on air quality,” Atmos. Poll. Res. (IF=4.831 [2021]), doi.org/10.1016/j.apr.2022.101366, 13, 4, 2022.
  • Huang, W.-S., Griffith, S. M.*, Lin, Y-C., Chen, Y.-C., Lee, C.-T., Chou, C. C.-K., Chuang, M.-T., Wang, S.-H., Lin, N.-H.*, “Satellite-based Emission Inventory Adjustments Improve Simulations of Long-Range Transport Events,” Aerosol Air Qual. Res. (IF=4.530 [2021]), doi.org/10.4209/aaqr.210121, 21, 210121, 2021.
  • Do, L. T. T., Griffith, S. M.*, Tseng, W.-T., Lin, N.-H.*, “Long-term trend of wintertime precipitation chemistry at a remote islet site influenced by anthropogenic emissions from continental East Asia,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2021.118626, 262, 118626, 2021.
  • Jin, L., Griffith, S. M., Sun, Z., Yu, J. Z., Chan, W., “On the Flip Side of Mask Wearing: Increased Exposure to Volatile Organic Compounds and a Risk-Reducing Solution,” Env. Sci. & Tech. (IF=11.357 [2021]), doi.org/10.1021/acs.est.1c04591, 55, 20, 14095-14104, 2021.
  • Pani, S. K., Lee, C.-T., Griffith, S. M., Lin N.-H., “Humic-like substances (HULIS) in springtime aerosols at a high-altitude background station in the western North Pacific: Source attribution, abundance, and light absorption,” Sci. Tot. Env. (IF=10.753 [2021]), doi.org/10.1016/j.scitotenv.2021.151180, 809, 151180, 2021.
  • Babu, S. R., Nguyen, L. S. P., Sheu, G.-R., Griffith, S. M., Pani, S. K., Huang, H.-Y., Lin, N.-H., “Long-range transport of La Soufrière volcanic plume to the western North Pacific: Influence on atmospheric mercury and aerosol properties,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2021.118806, 268, 118806, 2021.
  • Ou-Yang, C.-F., Babu, S. R., Lee, J.-R., Yen, M.-C., Griffith, S. M., Lin, C.-C., Chang, S.-C., Lin, N.-H., “Detection of stratospheric intrusion events and their role in ozone enhancement at a mountain background site in sub-tropical East Asia,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2021.118779, 268, 118779, 2021.
  • Chan, W.*, Jin, L., Sun, Z., Griffith, S. M.*, Yu, J. Z.*, “Fabric Masks as a Personal Dosimeter for Quantifying Exposure to Airborne Polycyclic Aromatic Hydrocarbons,” Env. Sci. & Tech. (IF=11.357 [2021]), doi.org/10.1021/acs.est.0c08327, 55, 8, 5128-5135, 2021.
  • Pani, S. K., Lin, N.-H., Griffith, S. M., Chantara, S., Lee, C.-T., Thepnuan, D., Tsai, Y.-I., “Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia,” Env. Poll. (IF=9.988 [2021]), doi.org/10.1016/j.envpol.2021.116735, 276, 116735, 2021.
  • Wang, Y.-C., Wang, S.-H., Lewis, J. R., Chang, S.-C., Griffith, S. M., “Determining planetary boundary layer height by micro-pulse lidar with validation by UAV measurements,” Aero. Air Qual. Res. (IF=4.530 [2021]), doi.org/10.4209/aaqr.200336, 21, 5, 2021.
  • Hansen, R. F., Griffith, S. M., Dusanter, S., Gilman, J. B., Graus, M., Kuster, W. C., Veres, P., de Gouw, J. A., Warneke, C., Washenfelder, R. A., Young, C. J., Brown, S. S., Alvarez, S. L., Flynn, J. H., Grossberg, N. E., Lefer, B., Rappenglueck, B., Stevens, P. S., “Measurements of Total OH Reactivity during CalNex-LA,” J. Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1029/2020JD032988, 126, 11, 2021.
  • Kong, S. S.-K., Fu, J. S., Dong, X.-Y., Chuang, M.-T., Ooi, M. C. G., Huang, W.-S., Griffith, S. M., Lin, N.-H., “Sensitivity analysis of the dust treatment in CMAQ v5.2.1 and its application to long-range transport over East Asia,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2021.118441, 257, 118441, 2021.
  • Griffith, S. M.*, Huang, W.-S., Lin, C.-C., Chen, Y.-C., Kuo, C.-E., Lin, T.-H., Wang, S.-H., Lin, N.-H.*, “Long-Range Air Pollution Transport in East Asia During the First Week of the COVID-19 Lockdown in China,” Sci. Tot. Env. (IF=10.753 [2021]), doi.org/10.1016/j.scitotenv.2020.140214, 741, 140214, 2020.
  • Zhou, Y., Zhang, Y., Griffith, S. M., Wu, G., Li, L., Zhao, Y., Li, M., Zhou, Z., Yu, J. Z., “Field Evidence of Fe-Mediated Photochemical Degradation of Oxalate and Subsequent Sulfate Formation Observed by Single Particle Mass Spectrometry,” Environ. Sci. Technol. (IF=11.357 [2021]), doi.org/10.1021/acs.est.0c00443, 54, 11, 6562-6574, 2020.
  • Hsiao, T. C., Chuang, H. C., Griffith, S. M., Chen, S. J., Young, L. H., “COVID-19: An Aerosol’s Point of View from Expiration to Transmission to Viral-Mechanism,” Aero. Air Qual. Res. (IF=4.530 [2021]), doi.org/10.4209/aaqr.2020.04.0154, 20, 5, 905-910, 2020.
  • Xue, J., Yu, X., Yuan, Z., Griffith, S. M., Lau, A.K.H., Seinfeld, J.H., & Yu, J. Z., “Efficient control of atmospheric sulfate production based on three formation regimes,” Nature Geosci. (IF=21.531 [2021]), doi.org/10.1038/s41561-019-0485-5, 12, 977-982, 2019.
  • Kuang, B., Yeung, H. S., Lee, C. C., Griffith, S. M., & Yu, J. Z., “Aromatic formulas in ambient PM2.5 samples from Hong Kong determined using FT-ICR ultrahigh-resolution mass spectrometry,” Analyt. and Bioanal. Chem. (IF=4.478 [2021]), doi.org/10.1007/s00216-018-1239-8, 410, 24, 6289-6304, 2018.
  • Wang, Q., Qiao, L., Zhou, M., Zhu, S., Griffith, S., Li, L., & Yu, J. Z., “Source Apportionment of PM2.5 Using Hourly Measurements of Elemental Tracers and Major Constituents in an Urban Environment: Investigation of Time-Resolution Influence,” J. Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1029/2017JD027877, 123, 2018.
  • de Gouw, J. A., Gilman, J. B., Kim, S.-W., Alvarez, S. L., Dusanter, S., Graus, M., Griffith, S. M., Isaacman-VanWertz, G., Kuster, W. C., Lefer, B., Lerner, B., McDonald, B. C., Rappenglueck, B., Roberts, J. M., Stevens, P. S., Stutz, J., Thalman, R., Veres, P., Volkamer, R., Warneke, C., Washenfelder, R. A., Young, C. J., “Chemistry of Volatile Organic Compounds in the Los Angeles Basin: Formation of Oxygenated Compounds and Determination of Emission Ratios,” J. Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1002/2017JD027976, 123, 4, 2298-2319, 2018.
  • Wang, Q., Xiao, H., Huang, X. H., Griffith, S. M., Feng, Y., Zhang, T., Zhang, Q., Wu, D., & Yu, J. Z., “Impact of Secondary Organic Aerosol Tracers on Tracer-Based Source Apportionment of Organic Carbon and PM2.5: A Case Study in the Pearl River Delta, China,” ACS Earth and Space Chemistry (IF=3.556 [2021]), doi.org/10.1021/acsearthspacechem.7b00088, 1(9), 2017.
  • Li, Y., Huang, H. X., Griffith, S. M., Wu, C., Lau, A. K., & Yu, J. Z., “Quantifying the relationship between visibility degradation and PM 2.5 constituents at a suburban site in Hong Kong: Differentiating contributions from hydrophilic and hydrophobic organic compounds,” Sci. Tot. Env. (IF=10.753 [2021]), doi.org/10.1016/j.scitotenv.2016.10.082, 575, 1571-1581, 2017.
  • Griffith, S. M., Hansen, R. F., Dusanter, S., Michoud, V., Gilman, J. B., Kuster, W. C., Veres, P. R., Graus, M., de Gouw, J. A., Roberts, J., Young, C., Washenfelder, R., Brown, S. S., Thalman, R., Waxman, E., Volkamer, R., Tsai, C., Stutz, J. Flynn, J. H., Grossberg, N., Lefer, B., Alvarez, S. L., Rappenglueck, B., Mielke, L. H., Osthoff, H. D., Stevens, P. S., “Measurements of Hydroxyl and Hydroperoxy Radicals during CalNex-LA 2010: Model Comparisons and Radical Budgets,” J. Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1002/2015JD024358, 121, 2016.
  • Wang, Q., Feng, Y., Huang, X. H., Griffith, S. M., Zhang, T., Zhang, Q., & Yu, J. Z., “Nonpolar organic compounds as PM2.5 source tracers: Investigation of their sources and degradation in the Pearl River Delta, China,” J. of Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1002/2016JD025315, 121(19), 2016.
  • Wu, C., Huang, X. H., Ng, W.M., Griffith, S. M., & Yu, J.Z., “Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: implications for inter-protocol data conversion,” Atmos. Meas. Tech. (IF=4.184 [2021]), doi.org/10.5194/amt-9-4547-2016, 9(9), 4547, 2016.
  • Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K., & Yu, J. Z., “Sulfate Formation Enhanced by a Cocktail of High NO x, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation” Env. Sci. Tech. (IF=11.357 [2021]), doi.org/10.1021/acs.est.6b00768, 50(14), 7325-7334, 2016.
  • Zhou, Y., Huang, X. H., Griffith, S. M., Li, M., Li, L., Zhou, Z., & Yu, J. Z., “A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2016.08.054, 143, 300-312, 2016.
  • Griffith, S. M., Huang, X. H. H., Louie, P. K. K., Yu, J. Z., “Characterizing the thermodynamic and chemical composition factors controlling PM2.5 nitrate: Insights gained from two years of online measurements in Hong Kong,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2015.02.009, 122, 864-875, 2015.
  • Zhou, Y., Huang, X. H. H., Bian, Q. J., Griffith, S. M., Louie, P. K. K., Yu, J. Z., “Sources and atmospheric processes impacting oxalate at a suburban coastal site in Hong Kong: Insights inferred from 1 year hourly measurements,” J. Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1002/2015JD023531, 120, 18, 9772-9788, 2015.
  • Xue, J., Griffith, S. M., Yu, X., Lau, A. K. H., Yu, J. Z., “Effect of nitrate and sulfate relative abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a polluted receptor site,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2014.09.049, 99, 24-31, 2014.
  • Hansen, R. F., Griffith, S. M., Dusanter, S., Rickly, P. S., Stevens, P. S., Bertman, S. B., Carroll, M. A., Erickson, M. H., Flynn, J. H., Grossberg, N., Jobson, B. T., Lefer, B. L., Wallace, H. W., “Measurements of total hydroxyl radical reactivity during CABINEX 2009 – Part 1: field measurements,” Atmos. Chem. Phys. (IF=7.197 [2021]), doi.org/10.5194/acp-14-2923-2014,14, 6, 2923-2937, 2014.
  • Griffith, S. M.*, Hansen, R. F., Dusanter, S., Stevens, P. S., Alaghmand, M., Bertman, S., Carroll, M. A., Erickson, M., Galloway, M., Grossberg, N., Hottle, J., Hou, J., Jobson, B. T., Kammrath, A., Keutsch, F. N., Lefer, B. L., Mielke, L. H., O’Brien, A., Shepson, P. B., Thurlow, M., Wallace, W., Zhang, N., Zhou, X. L., “OH and HO2 radical chemistry during PROPHET 2008 and CABINEX 2009 – Part 1: Measurements and model comparison,” Atmos. Chem. Phys. (IF=7.197 [2021]), doi.org/10.5194/acp-13-5403-2013, 13, 11, 5403-5423, 2013.
  • Pratt, K. A., Mielke, L. H., Shepson, P. B., Bryan, A. M., Steiner, A. L., Ortega, J., Daly, R., Helmig, D., Vogel, C. S., Griffith, S., Dusanter, S., Stevens, P. S., Alaghmand, M., “Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest,” Atmos. Chem. Phys. (IF=7.197 [2021]), doi.org/10.5194/acp-12-10125-2012  12, 21, 10125-10143, 2012.
  • Zhou, X, Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Alaghmand, M., Shepson, P. B., Carroll, M. A., Griffith, S., Dusanter, S., Stevens, P. S., “Nitric acid photolysis on forest canopy surface as a source for tropospheric nitrous acid,” Nature Geoscience (IF=21.531 [2021]), doi.org/10.1038/ngeo1164, 4, 7, 440-443, 2011.

 

 

Publications (in reverse chronological order)

  • Chang, P.-K., Griffith, S. M., Chuang, H.-C., Chuang, K.-J., Wang, Y.-H., Chang, K.-E., Hsiao, T.-C., “Particulate Matter in a Motorcycle-Dominated Urban Area: Source Apportionment and Cancer Risk of Lung-Deposited Surface Area (LDSA) Concentrations,” J. Haz. Mat. (IF=14.224 [2021]), doi.org/10.1016/j.jhazmat.2021.128188, 427, 128188, 2022.
  • Nguyen, L. S. P., Nguyen, K. T., Griffith, S. M., Sheu, G.-R., Yen, M.-C., Chang, S.-C., Lin, N.-H., “Multi-scale temporal variations of atmospheric mercury distinguished by Hilbert-Huang transform (HHT) analysis reveals multiple ENSO links,” Env. Sci. & Tech. (IF=11.357 [2021]), doi.org/10.1021/acs.est.1c03819, 56, 2, 1423-1432, 2022.
  • Liu, W.-T., Liao, W.-C., Griffith, S. M., Chang, C.-C., Wu, Y.-C., Wang, C. H., Wang, J.-L., “Characterization of odorous industrial plumes by coupling fast and slow mass spectrometry techniques for volatile organic compounds,” Chemosphere (IF=8.943 [2021]), doi.org/10.1016/j.chemosphere.2022.135304, 304, 135304, 2022.
  • Pani, S. K., Lin, N.-H., Lee, C.-T., Griffith, S. M., Chang, J. H-W., Hsu, B.-J., “Insights into aerosol chemical composition and optical properties at Lulin Atmospheric Background Station (2862 m asl) during two contrasting seasons,” Sci. Tot. Env. (IF=10.753 [2021]), doi.org/10.1016/j.scitotenv.2022.155291, 834, 155291, 2022.
  • Kong, S. S.-K., Pani, S. K., Griffith, S. M., Ou-Yang, C.-F., Babu, S. R., Chuang, M.-T., Ooi, M. C. G., Huang, W.-S., Sheu, G.-R., Lin, N.-H., “Distinct transport mechanisms of East Asian dust and the impact on downwind marine and atmospheric environments,” Sci. Tot. Env. (IF=10.753 [2021]), doi.org/10.1016/j.scitotenv.2022.154255, 827, 154255, 2022.
  • Lin, T.-C., Chiueh, P.-T., Griffith, S. M., Liao, C.-C., Hsiao, T.-C., “Deployment of a mobile platform to characterize spatial and temporal variation of on-road fine particles in an urban area,” Env. Res. (IF=8.431 [2021]), doi.org/10.1016/j.envres.2021.112349, 204, 112349, 2022.
  • Nguyen, L. S. P., Chang, J. H.-W., Griffith, S. M., Hien, T. T., Kong, S. S.-K., Le, H. N., Huang, H.-Y., Sheu, G.-R., Lin, N.-H., “Trans-boundary air pollution in a Southeast Asian megacity: Case studies of the synoptic meteorological mechanisms and impacts on air quality,” Atmos. Poll. Res. (IF=4.831 [2021]), doi.org/10.1016/j.apr.2022.101366, 13, 4, 2022.
  • Huang, W.-S., Griffith, S. M.*, Lin, Y-C., Chen, Y.-C., Lee, C.-T., Chou, C. C.-K., Chuang, M.-T., Wang, S.-H., Lin, N.-H.*, “Satellite-based Emission Inventory Adjustments Improve Simulations of Long-Range Transport Events,” Aerosol Air Qual. Res. (IF=4.530 [2021]), doi.org/10.4209/aaqr.210121, 21, 210121, 2021.
  • Do, L. T. T., Griffith, S. M.*, Tseng, W.-T., Lin, N.-H.*, “Long-term trend of wintertime precipitation chemistry at a remote islet site influenced by anthropogenic emissions from continental East Asia,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2021.118626, 262, 118626, 2021.
  • Jin, L., Griffith, S. M., Sun, Z., Yu, J. Z., Chan, W., “On the Flip Side of Mask Wearing: Increased Exposure to Volatile Organic Compounds and a Risk-Reducing Solution,” Env. Sci. & Tech. (IF=11.357 [2021]), doi.org/10.1021/acs.est.1c04591, 55, 20, 14095-14104, 2021.
  • Pani, S. K., Lee, C.-T., Griffith, S. M., Lin N.-H., “Humic-like substances (HULIS) in springtime aerosols at a high-altitude background station in the western North Pacific: Source attribution, abundance, and light absorption,” Sci. Tot. Env. (IF=10.753 [2021]), doi.org/10.1016/j.scitotenv.2021.151180, 809, 151180, 2021.
  • Babu, S. R., Nguyen, L. S. P., Sheu, G.-R., Griffith, S. M., Pani, S. K., Huang, H.-Y., Lin, N.-H., “Long-range transport of La Soufrière volcanic plume to the western North Pacific: Influence on atmospheric mercury and aerosol properties,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2021.118806, 268, 118806, 2021.
  • Ou-Yang, C.-F., Babu, S. R., Lee, J.-R., Yen, M.-C., Griffith, S. M., Lin, C.-C., Chang, S.-C., Lin, N.-H., “Detection of stratospheric intrusion events and their role in ozone enhancement at a mountain background site in sub-tropical East Asia,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2021.118779, 268, 118779, 2021.
  • Chan, W.*, Jin, L., Sun, Z., Griffith, S. M.*, Yu, J. Z.*, “Fabric Masks as a Personal Dosimeter for Quantifying Exposure to Airborne Polycyclic Aromatic Hydrocarbons,” Env. Sci. & Tech. (IF=11.357 [2021]), doi.org/10.1021/acs.est.0c08327, 55, 8, 5128-5135, 2021.
  • Pani, S. K., Lin, N.-H., Griffith, S. M., Chantara, S., Lee, C.-T., Thepnuan, D., Tsai, Y.-I., “Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia,” Env. Poll. (IF=9.988 [2021]), doi.org/10.1016/j.envpol.2021.116735, 276, 116735, 2021.
  • Wang, Y.-C., Wang, S.-H., Lewis, J. R., Chang, S.-C., Griffith, S. M., “Determining planetary boundary layer height by micro-pulse lidar with validation by UAV measurements,” Aero. Air Qual. Res. (IF=4.530 [2021]), doi.org/10.4209/aaqr.200336, 21, 5, 2021.
  • Hansen, R. F., Griffith, S. M., Dusanter, S., Gilman, J. B., Graus, M., Kuster, W. C., Veres, P., de Gouw, J. A., Warneke, C., Washenfelder, R. A., Young, C. J., Brown, S. S., Alvarez, S. L., Flynn, J. H., Grossberg, N. E., Lefer, B., Rappenglueck, B., Stevens, P. S., “Measurements of Total OH Reactivity during CalNex-LA,” J. Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1029/2020JD032988, 126, 11, 2021.
  • Kong, S. S.-K., Fu, J. S., Dong, X.-Y., Chuang, M.-T., Ooi, M. C. G., Huang, W.-S., Griffith, S. M., Lin, N.-H., “Sensitivity analysis of the dust treatment in CMAQ v5.2.1 and its application to long-range transport over East Asia,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2021.118441, 257, 118441, 2021.
  • Griffith, S. M.*, Huang, W.-S., Lin, C.-C., Chen, Y.-C., Kuo, C.-E., Lin, T.-H., Wang, S.-H., Lin, N.-H.*, “Long-Range Air Pollution Transport in East Asia During the First Week of the COVID-19 Lockdown in China,” Sci. Tot. Env. (IF=10.753 [2021]), doi.org/10.1016/j.scitotenv.2020.140214, 741, 140214, 2020.
  • Zhou, Y., Zhang, Y., Griffith, S. M., Wu, G., Li, L., Zhao, Y., Li, M., Zhou, Z., Yu, J. Z., “Field Evidence of Fe-Mediated Photochemical Degradation of Oxalate and Subsequent Sulfate Formation Observed by Single Particle Mass Spectrometry,” Environ. Sci. Technol. (IF=11.357 [2021]), doi.org/10.1021/acs.est.0c00443, 54, 11, 6562-6574, 2020.
  • Hsiao, T. C., Chuang, H. C., Griffith, S. M., Chen, S. J., Young, L. H., “COVID-19: An Aerosol’s Point of View from Expiration to Transmission to Viral-Mechanism,” Aero. Air Qual. Res. (IF=4.530 [2021]), doi.org/10.4209/aaqr.2020.04.0154, 20, 5, 905-910, 2020.
  • Xue, J., Yu, X., Yuan, Z., Griffith, S. M., Lau, A.K.H., Seinfeld, J.H., & Yu, J. Z., “Efficient control of atmospheric sulfate production based on three formation regimes,” Nature Geosci. (IF=21.531 [2021]), doi.org/10.1038/s41561-019-0485-5, 12, 977-982, 2019.
  • Kuang, B., Yeung, H. S., Lee, C. C., Griffith, S. M., & Yu, J. Z., “Aromatic formulas in ambient PM2.5 samples from Hong Kong determined using FT-ICR ultrahigh-resolution mass spectrometry,” Analyt. and Bioanal. Chem. (IF=4.478 [2021]), doi.org/10.1007/s00216-018-1239-8, 410, 24, 6289-6304, 2018.
  • Wang, Q., Qiao, L., Zhou, M., Zhu, S., Griffith, S., Li, L., & Yu, J. Z., “Source Apportionment of PM2.5 Using Hourly Measurements of Elemental Tracers and Major Constituents in an Urban Environment: Investigation of Time-Resolution Influence,” J. Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1029/2017JD027877, 123, 2018.
  • de Gouw, J. A., Gilman, J. B., Kim, S.-W., Alvarez, S. L., Dusanter, S., Graus, M., Griffith, S. M., Isaacman-VanWertz, G., Kuster, W. C., Lefer, B., Lerner, B., McDonald, B. C., Rappenglueck, B., Roberts, J. M., Stevens, P. S., Stutz, J., Thalman, R., Veres, P., Volkamer, R., Warneke, C., Washenfelder, R. A., Young, C. J., “Chemistry of Volatile Organic Compounds in the Los Angeles Basin: Formation of Oxygenated Compounds and Determination of Emission Ratios,” J. Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1002/2017JD027976, 123, 4, 2298-2319, 2018.
  • Wang, Q., Xiao, H., Huang, X. H., Griffith, S. M., Feng, Y., Zhang, T., Zhang, Q., Wu, D., & Yu, J. Z., “Impact of Secondary Organic Aerosol Tracers on Tracer-Based Source Apportionment of Organic Carbon and PM2.5: A Case Study in the Pearl River Delta, China,” ACS Earth and Space Chemistry (IF=3.556 [2021]), doi.org/10.1021/acsearthspacechem.7b00088, 1(9), 2017.
  • Li, Y., Huang, H. X., Griffith, S. M., Wu, C., Lau, A. K., & Yu, J. Z., “Quantifying the relationship between visibility degradation and PM 2.5 constituents at a suburban site in Hong Kong: Differentiating contributions from hydrophilic and hydrophobic organic compounds,” Sci. Tot. Env. (IF=10.753 [2021]), doi.org/10.1016/j.scitotenv.2016.10.082, 575, 1571-1581, 2017.
  • Griffith, S. M., Hansen, R. F., Dusanter, S., Michoud, V., Gilman, J. B., Kuster, W. C., Veres, P. R., Graus, M., de Gouw, J. A., Roberts, J., Young, C., Washenfelder, R., Brown, S. S., Thalman, R., Waxman, E., Volkamer, R., Tsai, C., Stutz, J. Flynn, J. H., Grossberg, N., Lefer, B., Alvarez, S. L., Rappenglueck, B., Mielke, L. H., Osthoff, H. D., Stevens, P. S., “Measurements of Hydroxyl and Hydroperoxy Radicals during CalNex-LA 2010: Model Comparisons and Radical Budgets,” J. Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1002/2015JD024358, 121, 2016.
  • Wang, Q., Feng, Y., Huang, X. H., Griffith, S. M., Zhang, T., Zhang, Q., & Yu, J. Z., “Nonpolar organic compounds as PM2.5 source tracers: Investigation of their sources and degradation in the Pearl River Delta, China,” J. of Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1002/2016JD025315, 121(19), 2016.
  • Wu, C., Huang, X. H., Ng, W.M., Griffith, S. M., & Yu, J.Z., “Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: implications for inter-protocol data conversion,” Atmos. Meas. Tech. (IF=4.184 [2021]), doi.org/10.5194/amt-9-4547-2016, 9(9), 4547, 2016.
  • Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K., & Yu, J. Z., “Sulfate Formation Enhanced by a Cocktail of High NO x, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation” Env. Sci. Tech. (IF=11.357 [2021]), doi.org/10.1021/acs.est.6b00768, 50(14), 7325-7334, 2016.
  • Zhou, Y., Huang, X. H., Griffith, S. M., Li, M., Li, L., Zhou, Z., & Yu, J. Z., “A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2016.08.054, 143, 300-312, 2016.
  • Griffith, S. M., Huang, X. H. H., Louie, P. K. K., Yu, J. Z., “Characterizing the thermodynamic and chemical composition factors controlling PM2.5 nitrate: Insights gained from two years of online measurements in Hong Kong,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2015.02.009, 122, 864-875, 2015.
  • Zhou, Y., Huang, X. H. H., Bian, Q. J., Griffith, S. M., Louie, P. K. K., Yu, J. Z., “Sources and atmospheric processes impacting oxalate at a suburban coastal site in Hong Kong: Insights inferred from 1 year hourly measurements,” J. Geophys. Res. Atmos. (IF=5.217 [2021]), doi.org/10.1002/2015JD023531, 120, 18, 9772-9788, 2015.
  • Xue, J., Griffith, S. M., Yu, X., Lau, A. K. H., Yu, J. Z., “Effect of nitrate and sulfate relative abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a polluted receptor site,” Atmos. Env. (IF=5.755 [2021]), doi.org/10.1016/j.atmosenv.2014.09.049, 99, 24-31, 2014.
  • Hansen, R. F., Griffith, S. M., Dusanter, S., Rickly, P. S., Stevens, P. S., Bertman, S. B., Carroll, M. A., Erickson, M. H., Flynn, J. H., Grossberg, N., Jobson, B. T., Lefer, B. L., Wallace, H. W., “Measurements of total hydroxyl radical reactivity during CABINEX 2009 – Part 1: field measurements,” Atmos. Chem. Phys. (IF=7.197 [2021]), doi.org/10.5194/acp-14-2923-2014,14, 6, 2923-2937, 2014.
  • Griffith, S. M.*, Hansen, R. F., Dusanter, S., Stevens, P. S., Alaghmand, M., Bertman, S., Carroll, M. A., Erickson, M., Galloway, M., Grossberg, N., Hottle, J., Hou, J., Jobson, B. T., Kammrath, A., Keutsch, F. N., Lefer, B. L., Mielke, L. H., O’Brien, A., Shepson, P. B., Thurlow, M., Wallace, W., Zhang, N., Zhou, X. L., “OH and HO2 radical chemistry during PROPHET 2008 and CABINEX 2009 – Part 1: Measurements and model comparison,” Atmos. Chem. Phys. (IF=7.197 [2021]), doi.org/10.5194/acp-13-5403-2013, 13, 11, 5403-5423, 2013.
  • Pratt, K. A., Mielke, L. H., Shepson, P. B., Bryan, A. M., Steiner, A. L., Ortega, J., Daly, R., Helmig, D., Vogel, C. S., Griffith, S., Dusanter, S., Stevens, P. S., Alaghmand, M., “Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest,” Atmos. Chem. Phys. (IF=7.197 [2021]), doi.org/10.5194/acp-12-10125-2012  12, 21, 10125-10143, 2012.
  • Zhou, X, Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Alaghmand, M., Shepson, P. B., Carroll, M. A., Griffith, S., Dusanter, S., Stevens, P. S., “Nitric acid photolysis on forest canopy surface as a source for tropospheric nitrous acid,” Nature Geoscience (IF=21.531 [2021]), doi.org/10.1038/ngeo1164, 4, 7, 440-443, 2011.

 

週一, 15 八月 2022 06:50

KAI-CHIH TSENG Assistant Professor

Research Area and Interests.

  1. Dynamical System Analysis and Machine Learning
  2. Climate Dynamics
  3. Prediction and Projection of Extreme Weather

111年國立臺灣大學畢業生流向調查

 

  • 111年調查說明
  1. 調查對象為:109學年度、107學年度及105學年度之本國籍校友。
  2. 調查期間為:111年8月12日開始調查,規劃調查至10月23日,將依問卷回收情形進行滾動式調整。
  3. 調查問卷填答方式:簡訊通知、網路問卷、電話訪問方式填答問卷。
  4. 登入網路問卷的帳號為【學號】,密碼為【手機號碼】。網路問卷系統建構中,預定8月22日逐步上線。
  5. 若大學、研究所或博士班皆為本校校友,有可能需同時填寫2份以上問卷。
  6. 本次畢業生流向調查作業委託 輿智資通科技股份有限公司 辦理,以網路問卷跟電訪方式(電話為02-2502開頭)進行問卷填答,8月13日開啟電訪作業,敬請校友接到電訪的電話時,協助撥冗完成電訪調查,謝謝。

 

為持續與校友保持聯繫,請多多支持。

誠摯邀請校友參與本次調查活動,您的費心協助,將是寶貴的幫助,謝謝。

 

若您對填答問卷的帳號、密碼或內容有任何問題,請洽學生事務處學生職業生涯發展中心 林紘毅先生,連絡電話02-33662046或E-mail至Email住址會使用灌水程式保護機制。你需要啟動Javascript才能觀看它

 

  • 說明:
  1. 配合教育部的政策與規定,每年進行畢業滿1、3、5年的畢業生流向調查追蹤。
  2. 畢業生流向調查是希望藉由理解校友的現況與感想,期待校友的回饋資訊能做為未來辦學及校務發展改善、系所課程規劃、學校永續經營及高等教育人才培育相關政策研議之參考。
  3. 調查結果僅供學術與校務研究之用,將依個人資料保護法規定保管與遵循法令規定處理,請校友放心。
週六, 13 八月 2022 10:30

Graduate Course

Graduate Course

Graduate Course

According to the regulation of 2021 school year

Graduate Courses include Core courses and M-initial Courses offered by our department. Please visit Master Degree Requirements for more information about Core Courses. The following are the introduction of M-initial Courses. Please note that alternatives would be made depending on each semester.

Course (credits)

Course Introduction

  • Course
    Instructor
    Credit
    Introduction
  • Dynamic Climatology
    SUI CHUNG-HSING
    3
    This course teaches fundamental dynamics for low–frequency climate oscillations.
    | The content contains three themes:
    Ⅰ. Basic dynamics
    Ⅱ. Tropical Intraseasonal oscillations (TISO)
    Ⅲ. Annual cycle, interannual and decadal oscillations
    | The first theme consists of the following six subjects
    1. Shallow water model and equatorial waves
    2. Vertical mode separation in a stratified atmosphere
    3. Gill model
    4. Lindzen–Nigam model
    5. Two and half layer tropical atmospheric model
    6. Ocean model
  • Cloud and Moisture in Large-Scale Motion
    SUI CHUNG-HSING
    2
    The Earth climate is uniquely regulated by water vapor and clouds that are governed by convective processes of highly fluctuating nature. Yet, climate oscillations of different spatiotemporal scales exhibit surprisingly coherent large-scale structure. This indicates interactions of water cycles among water vapor, clouds, circulation, and radiation of different scales are essential climate processes that must be treated properly for seamless weather to S2S (subseasonal to seasonal) prediction. This course is designed to be a graduate level (both MS and Ph.D.) course, with an emphasis on interactions of convective processes (in PBL, shallow and deep clouds) with selected weather and climate disturbances. One half of the course is taught by lectures covering fundamental convective processes, bibliographic survey, literature review [basic and general references]. The rest of the course time will be devoted to observational and modeling analysis for specific subjects within the scope of this course. Students’ interests will be considered in determining the subjects. For example, the course may focus on modulations of convection by cold surges, tropical cyclones, intraseaonal oscillations, or ENSO.
  • Advanced Numerical Prediction
    MING-JEN YANG
    3
    This course will introduce the advanced applications of numerical weather prediction (NWP), mainly using the WRF model. The spectral and pseudospectral methods typically used in the global model and tropical cyclone studies will be discussed. Relaxation method used in solving the Laplace and Possion equations will be presented. Several methods for lateral boundaries used in regional models will be discussed. Class projects based on the material covered in this class will be assigned. Students taking this course are assumed to have the basic knowledge of finite-difference methods and numerical analysis.
  • Special Topic on Deep Convection
    MING-JEN YANG
    3
    The physical and dynamical processes of deep cumulus clouds, which usually occur in mesoscale convective systems (MCSs), tropical cyclones and cloud clusters, and orographic precipitation will be introduced. Examples of important deep-convection phenomena near the Taiwan area, such as typhoons and MCSs within a Mei-Yu front, and their associated dynamics will be demonstrated and discussed.
    | Lecture Outline:
    1. Types of Convective Clouds in Earth’s Atmosphere
    2. Basics of Cloud Microphysics
    3. Basics of Cloud Dynamics
    4. Cumulonimbus and Severe Storms
    5. Mesoscale Convective Systems
    6. Dynamics and Precipitation in Tropical Cyclones
    7. Instabilities within Deep Convection
    8. Gravity Waves Generation and Propagation
  • Topics in Atmosphere-Ocean Fluid Dynamics
    HUNG-CHI KUO
    1
    Earth’s atmosphere and ocean exhibit complex patterns of fluid motion over a wide range of space and time scales. The slow-manifold dynamics, as well as the scale interactions, are of vital importance. This is a special short course focusing on the large-scale atmosphere-ocean fluid dynamics (AOFD), the geostrophic turbulence (i.e., 2D turbulence) dynamics and some related topics. The theory of geostrophic turbulence relies on two important components: a conservation principle that energy and potential vorticity are nearly conserved and an irreversibility principle that breaks the time-reversal symmetry of the exact inviscid dynamics. The AOFD can be understood quite simply in the form of isentropic fluid dynamics. The course may be useful for people who are interested in the understanding of the climate, weather, physics, chemistry, and/or biology of Earth’s fluid environment.
    | This course contains
    1. Conservation laws and basic equations –
    Rotation and stratification; potential temperature/density; the primitive equations; The vertical transform and shallow-water equations
    2. Circulation, vorticity, absolute vorticity and potential vorticity –
    Helmholtz theorem, Gauss’ theorem, Stoke’s theorem, and Kelvin circulation theorem; Bjerknes solenoidal term, Rossby and Ertel’s potential vorticity (PV) equation; Impermeability theorem of PV substance.
    3. Potential vorticity conservation and isentropic fluid dynamics –
    thermodynamic reversibility and entropy, diabaticity and mixing, the equations of motion in isentropic coordinates, Ertel’s PV and entropy conservation Quasi-geostrophy in isentropic coordinates
    4. Slow manifold quasi-balanced dynamics and 2D turbulence –
    Bachelor’s hypothesis, selective decay of enstrophy; geostrophic adjustment, secondary circulation equation; examples in vortex dynamics and filamentations.
    5. Hamiltonian formulation [*optional] Re-derivation of isentropic equations; particle-re-labelling symmetry and PV conservation (Chapter 7.2 of Salmon); non-canonical Hamiltonian dynamics and PV as a Casmir (Chapter 7.10 of Salmon)
  • Advanced Atmospheric Dynamics
    HUNG-CHI KUO
    3
    This course would include Atmospheric Oceanic Fluid Dynamics (AOFD) and new topics such as nonlinear dynamic modeling, multi-balance and stability, feedback, latency, synchronization, and scale analysis etc. This course puts an emphasis on math thinking and model computation.
    | The course contains
    1. Fundamentals and the ultimate problems
    2. Governing equations
    3. Quasi-equilibrium dynamics
    4. Vertical transform
    5. Geostrophic adjustment
    6. 2D turbulence
    7. Normal modes
    8. Tropical cyclone dynamics
    9. Large scale ocean circulation
    10. Boundary later dynamics
  • Climate Diagnostics
    MONG-MING LU / SUI CHUNG-HSING
    2
    Short-term climate predictions on weekly, monthly, seasonal and annual timescales involve many processes that operate among the atmosphere, ocean and land surface. Monitoring and analyzing the weekly to interannual climate variability is an efficient way to enhance our understanding of global and regional climate variability and the relationship with high-impact weather events.
    This course is designed to be a graduate level (both MS and Ph.D.) course, with emphasis on learning about how to talk about natural variability from weekly to interannual time scales, and the fundamental statistical/quantitative methods used to diagnose the natural variability. The diagnostics aims to assess the nature of climate variations on differing time scales.
    The class will be a mixture of lectures, discussions, and student presentations. Half of the course is taught by interactive-oriented lectures covering the major topics that is relevant to the real-time climate monitoring and discussion. The rest of the course time will be devoted to observational and forecast data analysis and student presentations. There will be homework and midterm progress report to cover the lectures and a final oral presentation and written report on topic chosen by students.
  • Climate Variability and Predictability
    MONG-MING LU
    3
    Climate predictions on weekly, monthly, seasonal and annual timescales involve many processes that operate among the atmosphere, ocean and land surface. The ability to predict stems from the knowledge and understanding of global and regional climate variability and of the mechanisms that affect the state of the climate on weekly-to-decadal timescales. Such knowledge is a foundation for understanding climate change on centennial and longer time scales.
    This course is designed to be a graduate level (both MS and Ph.D.) course, with emphasis on understanding climate variability and predictability on from weekly to interannual time scales. The variability and predictability on decadal time scale will also be introduced. The relation between the major climate modes and regional weather and climate extremes such as droughts, floods, and cold and heat waves, and tropical cyclones will be discussed.
    The class will be a mixture of lectures, discussions, and student presentations. Two third of the course is taught by lectures covering the major topics, emphasizing and discussing the fundamentals, and literature reading. The rest of the course time will be devoted to observational and forecast data analysis discussion and student presentations. There will be homework and midterm exam to cover the lectures and a final research paper on topic chosen by students.
  • Special Topics on Tropical Climate Dynamics (1) - Madden Julian Oscillation
    MONG-MING LU
    1
    This is an advanced Tropical Climate Dynamics course intended for graduate students. It will introduce key observational phenomena in tropics and discuss dynamic mechanisms behind the observed phenomena. We plan to cover four topics (MJO, Monsoon, ENSO, Climate mean state) in different semesters.
    | For this semester the special topic is MJO and the course outline is as following
    1. Observed characteristics
    2. Eastward propagation and planetary scale selection
    3. Northward propagation in boreal summer
    4. Initiation
    5. Role of air-sea interaction and inter-annual variation
  • Special Topics on Tropical Climate Dynamics (2) – BSISO
    MONG-MING LU
    1
    This is an advanced Tropical Climate Dynamics course intended for graduate students. It will introduce key observational phenomena in tropics and discuss dynamic mechanisms behind the observed phenomena. We plan to cover four topics (MJO, Monsoon, ENSO, Climate mean state) in different semesters.For this semester, the special topic is boreal summer intraseasonal oscillation (BSISO), which is a deviation of the MJO.
    | The course outline is as following
    1. Observed characteristics
    2. Propagation and planetary scale selection
    3. Initiation process
    4. Role of air–sea and air–land interaction and interannual variation
  • Global Atmospheric Circulation
    YEN-TING HWANG
    3
    This course introduces the characteristics and the associated mechanisms of the large-scale circulation in the atmosphere. With the goal of bridging theories and observation using conceptual and numerical models with different level of complexity, we focus on the zonal mean circulation and briefly extend to the 3D circulation. Topics include: Hadley Circulation (its strength and extent), midlatitude zonal mean circulation (the drivers of westerlies), and 3D atmospheric circulation (monsoon, storm tracks). The model-projected trend (during global warming) of these circulations will be covered by paper discussions, which are designed to review and discuss the fundamental theories and simplified models.
  • Cloud Dynamics
    Chien-Ming Wu
    3
    This course focuses on the general dynamics of cloud systems. Models of fog, stratocumulus, shallow cumulus, deep cumulus, and orographic convection will be presented. Classes will include presentations by the instructor and students. Material covered in class will be supplemented by homework assignments, which require coding abilities. The class will conclude with student presentations on a chosen project.
    Class discussions will be held at the end of each topic or main subsection to discuss science questions arising from the material just presented. Each student is expected to have thought about such questions independently and be able to present these in class if called on.
    | The course contains
    1. Introduction on cloud dynamics –
    Government equations in simulating convective clouds in the atmosphere, Turbulence closure and Large Eddy Simulation on clouds
    2. Fogs and Stratocumulus Clouds –
    Formation and dissipation mechanisms, Mixed layer model
    3. Shallow cumulus –
    Boundary layer cumulus, Theories of entrainment, Detrainment in cumulus clouds, Mass flux cloud model
    4. Deep cumulus –
    Cloud/environment profiles, Parcel model and cumulus parameterization
    5. Orographic Systems –
    Theory of flow over hills and mountains, Orographic precipitation over complex topography
  • Earth System Model – Physical processes
    Chien-Ming Wu
    3
    The course introduces physical processes in Earth System Model (ESM), focusing on moist convection in nature, namely convective parameterization. We will analyze the results from large-eddy simulation (LES), cloud-resolving model (CRM) to build up conceptual models for the parameterization. This course will include lecture and hands on analyses including sub-grid scale parameterization, spatial-temporal scale of moist convection, quasi-equilibrium, cloud model, unified parameterization, future of earth system modeling.
  • Land-Atmosphere Interactions
    MIN-HUI LO
    3
    Feedbacks between land and atmosphere play a central role in the interactive functioning of the Earth's climate. The goal of this course is to understand the essential aspects of roles of land processes in the climate systems.
    | Topics covered include
    1. basics of terrestrial surface energy, water and carbon balances
    2. ecohydrology
    3. land use and land cover changes.
    Students will read several critical papers in these topics, and will also learn to design, perform, and analyze numerical climate experiments/outputs with a land surface model and climate model for their final project.
  • Mesoscale Meteorology
    CHENG-KU YU
    2
    As revealed by advances in observing technology such as Doppler radar remote sensing and in numerical modeling, it has been recognized that most of hazardous weather occurring in the real atmosphere are typically organized on an intermediate (viz. meso) scale. Particularly, because of the inherent complex of mesoscale phenomena, theoretical principal of the synoptic meteorology usually cannot be applied to explain dynamical processes associated with these severe weather events. The main objective of this course is to introduce various mesoscale phenomena occurring in the atmosphere, with special emphasis on their internal structure and associated dynamics. In this course, current understanding of mesoscale processes will be the major theme, but it will be also complemented by including some new findings from the latest results of mesoscale research.
    | The course outline will primarily include
    1. Fundamental Concepts of Mesoscale
    2. Fundamental Principle of Radar Observations
    3. Concept of Atmospheric Convection and Perturbation Pressure Diagnosis
    4. Midlatitude and Tropical Mesoscale Convective Systems
    5. Severe Storms
    6. Orographic Precipitation
  • Geophysical Fluid Dynamics
    SHIH-NAN CHEN
    3
    This is an upper-level undergraduate and graduate-level course on geophysical waves and instability. We will focus on slowly evolving flow that is nearly in geostrophic balance and thus satisfies the "Quasi-geostrophic (QG) approximation".
    | The primary subjects are
    1. Quasi-geostrophy
    2. Rossby wave
    3. Baroclinic instability
    4. Introductory wave-mean-flow interaction + Geostrophic turbulence
    The course format is a combination of lectures and student project, with student-led presentation/discussion.
  • Special Topics on Clouds and Environment
    WEI-TING CHEN
    3
  • Global Climate Change
    WEI-TING CHEN
    2
    This course provides a solid foundation in climate change science, including the physical basis of the climate systems, the development and application of climate models, the interpretation of future climate projection, and the potential impacts of climate change on the environment and human society.
    The students will carry out hands-on projects to review the IPCC reports (and related literature), to analyze climate data, and to discuss the cutting-edge topics in global and regional climate change.
  • Data Assimilation for Numerical Modeling
    LIEN GUO-YUAN
    3
    Data assimilation is an important field in numerical modeling and analysis in geoscience. It allows observation information to be objectively and optimally ingested into numerical models using statistical theories, providing analysis data which are essential for initializing model prediction and for climate studies.
    This course introduces the concept of data assimilation and study several common data assimilation schemes in geoscience, from simple interpolation to advanced methods such as variational data assimilation and ensemble Kalman filter. Recent advancement in this field and the implementation and application in operational numerical weather prediction are also introduced.
週六, 13 八月 2022 10:29

研究所課程

研究所課程

研究所課程
110學年度入學適用

包含本系開設之核心課程M字頭課程。核心課程可參考研究所修業規定,M字頭課程可參考下方課程,根據每學期開設之課程有所異動。

課程(學分數)

研究所課程介紹 Course introduction

  • Course
    Instructor
    Credit
    Introduction
  • 動力氣候學
    隋中興
    3
    本課程介紹大氣–海洋平均氣候與低頻震盪的特徵及動力過程,特別是熱帶多尺度波動。主要介紹 ITCZ 和年週期變化,熱帶氣旋與波動,季節內振盪、年際震盪(如厄爾尼諾–南方濤動,印度洋偶極子)、年代際變化。課程著重理論和概念模型的講授,以利學生理解觀測現象背後的物理機制。授課對象為具備大氣–海洋科學背景的大四及研究所學生。
  • 大尺度雲與水汽過程
    隋中興
    2
    The Earth climate is uniquely regulated by water vapor and clouds that are governed by convective processes of highly fluctuating nature. Yet, climate oscillations of different spatiotemporal scales exhibit surprisingly coherent large-scale structure. This indicates interactions of water cycles among water vapor, clouds, circulation, and radiation of different scales are essential climate processes that must be treated properly for seamless weather to S2S (subseasonal to seasonal) prediction. This course is designed to be a graduate level (both MS and Ph.D.) course, with an emphasis on interactions of convective processes (in PBL, shallow and deep clouds) with selected weather and climate disturbances. One half of the course is taught by lectures covering fundamental convective processes, bibliographic survey, literature review [basic and general references]. The rest of the course time will be devoted to observational and modeling analysis for specific subjects within the scope of this course. Students’ interests will be considered in determining the subjects. For example, the course may focus on modulations of convection by cold surges, tropical cyclones, intraseaonal oscillations, or ENSO.
  • 高等數值天氣預報
    楊明仁
    3
    This course will introduce the advanced applications of numerical weather prediction (NWP), mainly using the WRF model. The spectral and pseudospectral methods typically used in the global model and tropical cyclone studies will be discussed. Relaxation method used in solving the Laplace and Possion equations will be presented. Several methods for lateral boundaries used in regional models will be discussed. Class projects based on the material covered in this class will be assigned. Students taking this course are assumed to have the basic knowledge of finite-difference methods and numerical analysis.
  • 深對流特論
    楊明仁
    3
    The physical and dynamical processes of deep cumulus clouds, which usually occur in mesoscale convective systems (MCSs), tropical cyclones and cloud clusters, and orographic precipitation will be introduced. Examples of important deep-convection phenomena near the Taiwan area, such as typhoons and MCSs within a Mei-Yu front, and their associated dynamics will be demonstrated and discussed.
    | Lecture Outline:
    1. Types of Convective Clouds in Earth’s Atmosphere
    2. Basics of Cloud Microphysics
    3. Basics of Cloud Dynamics
    4. Cumulonimbus and Severe Storms
    5. Mesoscale Convective Systems
    6. Dynamics and Precipitation in Tropical Cyclones
    7. Instabilities within Deep Convection
    8. Gravity Waves Generation and Propagation
  • 大氣海洋流體力學特論
    郭鴻基
    1
    Earth’s atmosphere and ocean exhibit complex patterns of fluid motion over a wide range of space and time scales. The slow-manifold dynamics, as well as the scale interactions, are of vital importance. This is a special short course focusing on the large-scale atmosphere-ocean fluid dynamics (AOFD), the geostrophic turbulence (i.e., 2D turbulence) dynamics and some related topics. The theory of geostrophic turbulence relies on two important components: a conservation principle that energy and potential vorticity are nearly conserved and an irreversibility principle that breaks the time-reversal symmetry of the exact inviscid dynamics. The AOFD can be understood quite simply in the form of isentropic fluid dynamics. The course may be useful for people who are interested in the understanding of the climate, weather, physics, chemistry, and/or biology of Earth’s fluid environment.
    | This course contains
    1. Conservation laws and basic equations –
    Rotation and stratification; potential temperature/density; the primitive equations; The vertical transform and shallow-water equations
    2. Circulation, vorticity, absolute vorticity and potential vorticity –
    Helmholtz theorem, Gauss’ theorem, Stoke’s theorem, and Kelvin circulation theorem; Bjerknes solenoidal term, Rossby and Ertel’s potential vorticity (PV) equation; Impermeability theorem of PV substance.
    3. Potential vorticity conservation and isentropic fluid dynamics –
    thermodynamic reversibility and entropy, diabaticity and mixing, the equations of motion in isentropic coordinates, Ertel’s PV and entropy conservation Quasi-geostrophy in isentropic coordinates
    4. Slow manifold quasi-balanced dynamics and 2D turbulence –
    Bachelor’s hypothesis, selective decay of enstrophy; geostrophic adjustment, secondary circulation equation; examples in vortex dynamics and filamentations.
    5. Hamiltonian formulation [*optional] Re-derivation of isentropic equations; particle-re-labelling symmetry and PV conservation (Chapter 7.2 of Salmon); non-canonical Hamiltonian dynamics and PV as a Casmir (Chapter 7.10 of Salmon)
  • 高等大氣動力學
    郭鴻基
    3
    因應地球科學跨領域研究,高等大氣動力學課程的安排,除了傳統大氣動力學外,更廣泛包括大氣海洋流體力學 (Atmospheric Oceanic Fluid Dynamics, AOFD);課程也將加入新元素:例如探討空氣、水等流體性質對於生命科學與生物的影響;探討非線性動力數學建模,包含多重平衡與穩定、回饋、遲滯、同步、尺度分析等課題。課程重視數學思考與模式計算。
  • 氣候診斷
    盧孟明、隋中興
    2
    短期氣候預測的預測目標有週、月、季、年等不同時間長度,預測期間天氣與氣候變化持續受到海陸氣之間的相互作用影響。監測分析不同時間尺度的氣候變化並診斷造成變化的主要因素,是了解區域氣候和全球變化的關係、詮釋極端天氣與氣候的關係、以及設計預報模式產品應用方法的基礎。
    本課程適合研究所程度(碩、博)學生選修,著重在根據觀測資料詮釋氣候系統內部不同尺度變異,運用統計方法分析各種時空尺度的常見的現象,藉由課堂討論演練氣候知識的溝通與傳遞。上課方式有授課、討論、學生報告三部分,課程 50% 講授世界主要作業或研究中心目前進行實時 (real-time) 氣候監測及預報的主要項目、背景知識、使用方法,另 50% 配合學生自選的學期報告研究主題講授與討論相關研究進展。
  • 氣候變異與預測
    盧孟明
    3
    氣候變異概指由大氣、海洋、陸表共同組成的氣候系統相對於三十年或更長時期平均狀態的偏離程度,重要現象有以週、月、季、年為時間單位的短期氣候變化,以及與其相依相存的年代(十年)、多年代、世紀等長週期緩慢變化。氣候變異的發生機制決定於大氣、海洋、陸表交互作用的過程,了解這些過程以及各主要變異模態對全球和區域氣候的影響是發展氣候預測的科學基礎。
    本課程著重在時間尺度在三十年之內的氣候自然變化和預測,不包含尺度更長的氣候變遷或人為因素對氣候影響等課題。主要對象為碩博士班研究生,側重了解氣候變異主模態的現象與形成機制,氣候模式對氣候變異的模擬和預測能力,氣候可預測度來源的分析與解釋,氣候變異主模態與東南亞和西北太平洋以及臺灣天氣與氣候的關係。約三分之二的課程內容為講述動力氣候基本概念與文獻閱讀和討論,另三分之一為全球觀測和預測資料分析及討論。為加強對課程內容的了解,將有作業和期中考試,也將由學生在課程範圍內自己挑選想深入了解的研究題目在課堂討論並撰寫期末報告。
  • 熱帶氣候動力專題(1)-MJO
    盧孟明
    1
    本課程為熱帶動力的進階課程,適合研究所程度(碩、博)學生選修。內容將以專題方式邀請研究成果豐富的學者在不同學期講授熱帶最主要的四個研究主題:麥儒振盪、季風、聖嬰—南方震盪、氣候基本場,並進行書報討論與專題演練。本學期主題為麥儒振盪 (MJO),包含MJO的 (1) 觀測特性 (2) 向東傳遞與行星尺度的選擇 (3) 夏季向北傳遞 (4) 激發機制 (5) 海氣相互作用與年際變化。
  • 熱帶氣候動力專題(2)-BSISO
    盧孟明
    1
    本課程為熱帶動力的進階課程,適合研究所程度(碩、博)學生選修。內容將以專題方式邀請研究成果豐富的學者在不同學期講授熱帶最主要的四個研究主題:麥儒振盪、季風、聖嬰─南方震盪、氣候基本場,並進行書報討論與專題演練。本學期主題為北半球夏季季內震盪 (BSISO),為麥儒振盪 (MJO) 在夏季的偏移,包含 BSISO 的 (1) 觀測特性 (2) 傳遞與行星尺度的選擇 (3) 激發機制 (4) 海氣相互作用與年際變化。
  • 全球大氣環流
    黃彥婷
    3
    本課程介紹大尺度大氣環流之特徵與機制。利用漸進式複雜度的概念模型與數值模擬,連結理論與觀測。主題包括:控制哈利環流之強度與邊界的因子(這也控制了降雨分佈),中緯度波動與平均環流之交互作用(解釋西風帶),以及三維大氣環流(季風、中緯度風暴路徑等)。
  • 雲動力學
    吳健銘
    3
    This course focuses on the general dynamics of cloud systems. Models of fog, stratocumulus, shallow cumulus, deep cumulus, and orographic convection will be presented. Classes will include presentations by the instructor and students. Material covered in class will be supplemented by homework assignments, which require coding abilities. The class will conclude with student presentations on a chosen project.
    Class discussions will be held at the end of each topic or main subsection to discuss science questions arising from the material just presented. Each student is expected to have thought about such questions independently and be able to present these in class if called on.
    | The course contains
    1. Introduction on cloud dynamics –
    Government equations in simulating convective clouds in the atmosphere, Turbulence closure and Large Eddy Simulation on clouds
    2. Fogs and Stratocumulus Clouds –
    Formation and dissipation mechanisms, Mixed layer model
    3. Shallow cumulus –
    Boundary layer cumulus, Theories of entrainment, Detrainment in cumulus clouds, Mass flux cloud model
    4. Deep cumulus –
    Cloud/environment profiles, Parcel model and cumulus parameterization
    5. Orographic Systems –
    Theory of flow over hills and mountains, Orographic precipitation over complex topography
  • 地球系統模式—物理過程
    吳健銘
    3
    本課程將介紹地球系統模式之對流過程並分單元授課。主要介紹如何在大尺度模式中表示積雲對流的過程,稱為對流參數化,將使用高解析大渦模式 (LES),雲解析模式 (CRM) 之模擬結果簡化成概念模式。本課程課程內容包含講演與模式實作與分析。將分為下述課題: 次網格參數化,對流的時空尺度分析,準平衡過程,雲模式,統合參數化,以及未來的地球系統模式之介紹。
  • 陸地大氣交互作用
    羅敏輝
    3
    Feedbacks between land and atmosphere play a central role in the interactive functioning of the Earth's climate. The goal of this course is to understand the essential aspects of roles of land processes in the climate systems.
    | Topics covered include
    1. basics of terrestrial surface energy, water and carbon balances
    2. ecohydrology
    3. land use and land cover changes.
    Students will read several critical papers in these topics, and will also learn to design, perform, and analyze numerical climate experiments/outputs with a land surface model and climate model for their final project.
  • 中尺度氣象學
    游政谷
    2
    隨著近年來觀測儀器(技術)的進步以及高解析度數值模式的廣泛應用,使得我們慢慢了解到,較劇烈且具傷害力的天氣現象(如強烈降水與風暴)常侷限於中小尺度的範疇。可是由於發生這些劇烈天氣的原因相當多樣化且複雜,傳統的綜觀氣象理論基礎已無法滿足我們對於這些現象的了解。本課程的主要目的為介紹實際大氣中的中尺度天氣現象,並就各種不同的中尺度天氣系統,廣泛說明它們內部的結構與隱含的物理與動力過程。這其中,現階段的了解為授課重心,然而目前最新的研究成果也會在課堂上適時予以補充說明。
    | 課程內容將針對下列主題作有系統的闡釋
    1. 中尺度的基本概念
    2. 氣象都卜勒雷達觀測原理
    3. 大氣對流的觀念與擾動氣壓診斷
    4. 中緯度及熱帶中尺度對流系統
    5. 劇烈風暴
    6. 地形降水
  • 地物流力
    陳世楠
    3
    This is an upper-level undergraduate and graduate-level course on geophysical waves and instability. We will focus on slowly evolving flow that is nearly in geostrophic balance and thus satisfies the "Quasi-geostrophic (QG) approximation".
    | The primary subjects are
    1. Quasi-geostrophy
    2. Rossby wave
    3. Baroclinic instability
    4. Introductory wave-mean-flow interaction + Geostrophic turbulence
    The course format is a combination of lectures and student project, with student-led presentation/discussion.
  • 雲與環境專題討論
    陳維婷
    3
    本課程主旨在討論研究「台灣極端空氣汙染事件在不同天氣型態下之特性」,經由對觀測與模擬資料之分析瞭解當前東亞綜觀天氣型態下台灣 PM2.5 與環境條件、邊界層、雲物理、輻射收支、大尺度環流之關係,討論其中牽涉之物理過程,並推估未來氣候變遷情境下台灣 PM2.5 高汙染事件的可能改變。
  • 氣候變遷科學
    陳維婷
    2
    本課程旨在介紹氣候變遷科學的基礎關鍵知識,包括氣候系統的物理過程,氣候模式的發展及應用,未來氣候推估的解讀,以及氣候變遷對環境及社會的潛在影響。
    學生實作活動包括閱讀整理氣候變遷報告與相關文獻,氣候資料分析,以及全球和區域氣候變遷最新議題的討論。
  • 資料同化
    連國淵
    3
    在地球科學的數值模擬與分析中,資料同化為一個重要的領域。藉由基於統計理論的資料同化技術,我們可使觀測資訊被客觀且最佳化地採用於數值模式中,得到模式分析場,對初始化模式預報與氣候研究皆相當重要。
    本課程介紹資料同化的概念,研習地球科學領域中數種常用的資料同化方法,包括從簡單的內插法到如變分資料同化以及系集卡爾曼濾波器等進階的方法。亦將介紹本領域中最新的進展,以及其在作業數值天氣預報中的實作與應用。
第 45 頁,共 53 頁